Respuesta :

Answer:

[tex]UV=8\ units[/tex]

[tex]XY=16\ units[/tex]

[tex]TW=24\ units[/tex]

Step-by-step explanation:

we know that

In this problem

XY is the mid-segment of trapezoid TUVW (because K is the midpoint segment TU and Y is the midpoint segment VW)

Remember that the length of the mid-segment is the sum of the two parallel bases divided by 2

so

[tex]XY=\frac{UV+TW}{2}[/tex]

substitute the given values

[tex]3x+7=\frac{3x-1+8x}{2}[/tex]

solve for x

Multiply by 2 both sides

[tex]6x+14=11x-1[/tex]

[tex]11x-6x=14+1[/tex]

[tex]5x=15[/tex]

[tex]x=3[/tex]

Find the length segment UV

[tex]UV=3x-1[/tex]

substitute the value of x

[tex]UV=3(3)-1=8\ units[/tex]

Find the length segment XY

[tex]XY=3x+7[/tex]

substitute the value of x

[tex]XY=3(3)+7=16\ units[/tex]

Find the length segment TW

[tex]TW=8x[/tex]

substitute the value of x

[tex]TW=8(3)=24\ units[/tex]