Respuesta :
Answer:
Equation of line is:
[tex]y=-15x+22[/tex]
Step-by-step explanation:
Given points:
(2,-8) and (1,7)
To write the equation in point slope form.
Solution:
In order to find the equation of line, we will find the slope of the line by slope formula.
The slope [tex]m[/tex] of the line passing through points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given as:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Thus, slope of given line can be given as:
[tex]m=\frac{7-(-8)}{1-2}[/tex]
[tex]m=\frac{7+8}{-1}[/tex]
[tex]m=\frac{15}{-1}[/tex]
∴ [tex]m=-15[/tex]
The point slope of the equation for line with slope [tex]m[/tex] passing through point [tex](x_1,y_1)[/tex] is given as:
[tex]y-y_1=m(x-x_1)[/tex]
Using point (1,7) to find the equation of line.
[tex]y-7=-15(x-1)[/tex]
Using distribution.
[tex]y-7=-15x+15[/tex]
Adding 7 both sides.
[tex]y-7+7=-15x+15+7[/tex]
[tex]y=-15x+22[/tex] [Answer]