Determining Exponential Growth and Decay in Exercise, use the given information to write an exponential equation for y. Does the function represent exponential growth or exponential decay?
dy/dt = -2/3y, y = 20 when t = 0

Respuesta :

Answer:

[tex]y=20e^{-\frac{2}{3}t}[/tex]

Exponential decay

Step-by-step explanation:

We are given that

[tex]\frac{dy}{dt}=-\frac{2}{3}y[/tex]

y=20 when t=0

[tex]\frac{dy}{y}=-\frac{2}{3}dt[/tex]

Taking integration on both sides then we get

[tex]lny=-\frac{2}{3}t+C[/tex]

Using formula  [tex]\int \frac{dx}{x}=lnx,\int dx=x[/tex]

[tex]y=e^{-\frac{2}{3}t+C}[/tex]

Using formula

[tex]lnx=y\implies x=e^y[/tex]

[tex]y=e^C\cdot e^{-\frac{2}{3}t}[/tex]

[tex]e^C=Constant=C[/tex]

[tex]y=Ce^{-\frac{2}{3}t}[/tex]

Substitute y=20 and t=0

[tex]20=C[/tex]

Substitute the value of C

[tex]y=20e^{-\frac{2}{3}t}[/tex]

When t tends to infinity then

[tex]\lim_{t\rightarrow\infty}=\lim_{t\rightarrow\infty}20e^{-\frac{2}{3}t}=0[/tex]

When time increases then the value of function decrease

Hence, the  function is exponential decay.