Capital Value Find the capital value of an asset that generates $7200 yearly income if the interest rate is as follows.
a. 5% compounded continuously
b. 10% compounded continuously

Respuesta :

a. An asset that generates $7200 yearly income if the interest rate 5% compounded continuously, then its capital value is $140433.002

b. An asset that generates $7200 yearly income if the interest rate 10% compounded continuously, then its capital value is $68460.59

Step-by-step explanation:

For continuously compound interest

                    [tex]A = P \times e^{r t}[/tex]  ---------------> eq.1

Where

P = principal amount (initial investment)

r = annual interest rate (as a decimal)

t = number of years

A = amount after time t.

Let’s solve the equation

Where,

P is unknown

                     A = P + 7200 (asset after 1 year) ---------------> eq. 2

Case A:

           [tex]r=\frac{\text {interest rate}}{100}=\frac{5}{100}=0.05[/tex]

t = 1 (1 year)

Substitute all values in the formula (2) using the formula (1),

          [tex]P \times e^{(0.05)(1)}=P+7200[/tex]

          [tex]P \times e^{0.05}-P=7200[/tex]

          [tex]P\left(e^{0.05}-1\right)=7200[/tex]

          [tex]P(1.05127-1)=7200[/tex]

          [tex]P(0.05127)=7200[/tex]

          [tex]P=\frac{7200}{0.05127}=\$140433.002[/tex]

Case B:

       [tex]r=\frac{\text {interest rate}}{100}=\frac{10}{100}=0.10[/tex]

t = 1 (1 year)

Substitute all values in the formula (2) using the formula (1),

         [tex]P \times e^{(0.10)(1)}=P+7200[/tex]

         [tex]P \times e^{0.10}-P=7200[/tex]

         [tex]P\left(e^{0.10}-1\right)=7200[/tex]

         [tex]P(1.10517-1)=7200[/tex]

         [tex]P(0.10517)=7200[/tex]

         [tex]P=\frac{7200}{0.10517}=\$68460.59[/tex]