Capital Value An investment produces a perpetual stream of income with a flow rate of
R(t)=1200e^0.03 t.
Find the capital value at an interest rate of 7% compounded continuously.

Respuesta :

Answer:

$30,000

Step-by-step explanation:

The capital value is given by

[tex]\int_{0}^{\infty} R(t) e^{-r t} dt[/tex]

where R(t) is annual rate

r - annual rate of interest

capital value [tex]= \int_{0}^{\infty} 1200 e^{0.03t} e^{-0.07 t} dt[/tex]

                      = lim at b tend to infinity[tex] \int_{0}^{b} 1200 e^{0.03t} dt[/tex]

                      =lim at b tend to infinity [tex] \left [ \frac{1200}{-0.04} e^{-0.04 t} \right ]_0^b[/tex]

-30,000 { lim at b tend to inifinity[tex] (e^{-0.04 b) = e^0][/tex]

As[tex]b\rightarrow \infty,  e^{-0.04 b} \rightarrow 0[/tex]

[tex]\int_{0}^{\infty} 1200 e^{0.03t} e^{-0.07 t} dt = -30,000(0 -1) =$30,000[/tex]