Answer:
Step-by-step explanation:
We are to integrate the function
[tex]e^-0.00001x[/tex] from 0 to b for different ascending values of x.
[tex]\int e^-0.00001x = -10^5 e^-0.00001x[/tex]
Now we substitute the limits
When b =10
I = integral value = [tex]-10^5 e^-0.00001*10[/tex]
b =50, I = [tex]-10^5(e^-0.00001*50-1)[/tex]
b =100, I = [tex]-10^5( e^-0.00001*100-1)[/tex]
b =1000 I= [tex]-10^5 (e^-0.00001*1000-1)[/tex]
b) As b increases exponent increases in negative, or denominator increases hence when b becomes large this will be a decreasing sequence hence converges
c) Converges to [tex]-10^5 (0-1)[/tex]=10^5