Find the area between the graph of the given function and the x-axis over the given interval, if possible.
f(x)=3/(x-1)^3, for [-[infinity], 0]

Respuesta :

Answer:

[tex]A= -\dfrac{3}{2}[/tex]

area between curve and the x-axis, within the intervals [tex]x=[-\infty,0)[/tex]

Step-by-step explanation:

Given function is:

[tex]f(x) = \dfrac{x}{(x-1)^3}[/tex]

to find its area between the intervals [tex]x=[-\infty,0)[/tex], we'll need to integrate it.

[tex]A = \displaystyle{\int^0_{-\infty} {\dfrac{x}{(x-1)^3} \, dx}[/tex]

[tex]A = \left|- \dfrac{3}{2 \left(x - 1\right)^{2}}\right|^0_{-\infty}[/tex]

[tex]A = \left(- \dfrac{3}{2 \left(0 - 1\right)^{2}}\right)-\left(- \dfrac{3}{2 \left(-\infty - 1\right)^{2}}\right)[/tex]

[tex]A= \left(- \dfrac{3}{2}\right)-0[/tex]

[tex]A= -\dfrac{3}{2}\,\text{unit}^2[/tex]