Respuesta :
Answer:
The improper integral diverges.
[tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \infty[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Integration Property [Splitting Integral]: [tex]\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx[/tex]
Integration Method: U-Substitution
Improper Integrals: [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Splitting Integral]: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \int\limits^{0}_{- \infty} {e^{|x|}} \, dx + \int\limits^{\infty}_{0} {e^{|x|}} \, dx[/tex]
- [Integrals] Rewrite [Improper Integrals]: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \lim_{a \to -\infty} \int\limits^{0}_{a} {e^{|x|}} \, dx + \lim_{b \to \infty} \int\limits^{b}_{0} {e^{|x|}} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = |x|[/tex]
- [u] Differentiate [Absolute Value Differentiation]: [tex]\displaystyle du = \frac{|x|}{x} \ dx[/tex]
Step 4: Integrate Pt. 3
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \lim_{a \to -\infty} \frac{x}{|x|} \int\limits^{0}_{a} {\frac{|x|}{x} e^{|x|}} \, dx + \lim_{b \to \infty} \frac{x}{|x|} \int\limits^{b}_{0} {\frac{|x|}{x} e^{|x|}} \, dx[/tex]
- [Integrals] Apply U-Substitution: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \lim_{a \to -\infty} \frac{x}{|x|} \int\limits^{0}_{a} {e^{u}} \, du + \lim_{b \to \infty} \frac{x}{|x|} \int\limits^{b}_{0} {e^{u}} \, du[/tex]
- [Integrals] Apply Exponential Integration: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \lim_{a \to -\infty} \frac{x}{|x|} \bigg( e^u \bigg) \bigg| \limits^{x = 0}_{x = a} + \lim_{b \to \infty} \frac{x}{|x|} \bigg( e^u \bigg) \bigg| \limits^{x = b}_{x = 0}[/tex]
- [u] Back-substitute: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \lim_{a \to -\infty} \frac{x}{|x|} \bigg( e^{|x|} \bigg) \bigg| \limits^{0}_{a} + \lim_{b \to \infty} \frac{x}{|x|} \bigg( e^{|x|} \bigg) \bigg| \limits^{b}_{0}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \lim_{a \to -\infty} \frac{x \big( 1 - e^{|a|} \big) }{|x|} + \lim_{b \to \infty} \frac{x \big( e^{|b|} - 1 \big)}{|x|}[/tex]
- [Limits] Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \frac{x \big( 1 - e^{\infty} \big) }{|x|} + \frac{x \big( e^{\infty} - 1 \big)}{|x|}[/tex]
- Simplify: [tex]\displaystyle \int\limits^{\infty}_{- \infty} {e^{|x|}} \, dx = \infty[/tex]
∴ the improper integrals tends to ∞ and is divergent.
---
Learn more about improper integrals: https://brainly.com/question/14413973
Learn more about calculus: brainly.com/question/23558817
---
Topic: AP Calculus BC (Calculus I + II)
Unit: Integration