Respuesta :

[tex]\frac{d(lnx)}{dx}=\frac{1}{x}[/tex]

Answer:

[tex]\frac{dy}{dx}=e^{x^2}(\frac{2x^2ln(4x^3)+3}{x})[/tex]

Step-by-step explanation:

We are given that a function

[tex]y=e^{x^2}ln(4x^3)[/tex]

We have to differentiate w.r.t x

[tex]\frac{dy}{dx}=e^{x^2}\times 2xln(4x^3)+e^{x^2}\times \frac{1}{4x^3}\times 12x^2[/tex]

By using formula

[tex]\frac{d(lnx)}{dx}=\frac{1}{x}[/tex]

[tex]\frac{d(e^x)}{dx}=e^x[/tex]

[tex]\frac{dy}{dx}=e^{x^2}(2xln(4x^3)+\frac{3}{x})[/tex]

[tex]\frac{dy}{dx}=e^{x^2}(\frac{2x^2ln(4x^3)+3}{x})[/tex]

Hence, the derivative of function

[tex]\frac{dy}{dx}=e^{x^2}(\frac{2x^2ln(4x^3)+3}{x})[/tex]