Respuesta :

Answer:

[tex]\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})][/tex]

Step-by-step explanation:

Given function:

y =[tex]\ln(\frac{(6 - x)^{\frac{3}{2}}}{x^{\frac{2}{3}}})[/tex]

we know

[tex]\ln(\frac{A}{B})[/tex] = ln(A) - ln(B)

thus,

y = [tex]\ln((6 - x)^{\frac{3}{2}}) - \ln(x^{\frac{2}{3}})[/tex]

or

also,

ln(Aⁿ) = n × ln(A)

thus,

y = [tex](\frac{3}{2})\times\ln(6 - x) - (\frac{2}{3})\times\ln(x)[/tex]

therefore,

[tex]\frac{dy}{dx}=[(\frac{3}{2})\times\frac{1}{(6-x)}\times(0 - 1)] - [ (\frac{2}{3})\times\frac{1}{x}\times1][/tex]

or

[tex]\frac{dy}{dx}=-(\frac{3}{2(6-x)}) - (\frac{2}{3x})[/tex]

or

[tex]\frac{dy}{dx}=-[(\frac{3(3x)+2\times2(6-x)}{2(6-x)\times(3x)})][/tex]

or

[tex]\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})][/tex]