Respuesta :

Space

Answer:

The improper integral diverges.

[tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \infty[/tex]

General Formulas and Concepts:
Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                         [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                       [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                 [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                     [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                   [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method: U-Substitution

Integration by Parts:                                                                                           [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Improper Integrals:                                                                                           [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]

Step-by-step explanation:

*Note:

When doing integration by parts and using LIPET, ignore the integration constant C when finding v.

Step 1: Define

Identify.

[tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx[/tex]

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Improper Integral]:                                                     [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \int\limits^b_0 {xe^{4x}} \, dx[/tex]

Step 3: Integrate Pt. 2

Identify variables for integration by parts.

  1. Set u [LIPET]:                                                                                             [tex]\displaystyle u = x[/tex]
  2. [u] Differentiate [Derivative Rule - Basic Power Rule]:                           [tex]\displaystyle du = dx[/tex]
  3. Set dv [LIPET]:                                                                                           [tex]\displaystyle dv = e^{4x} \ dx[/tex]

Find v using u-substitution.

  1. [dv] Set z:                                                                                                   [tex]\displaystyle z = 4x[/tex]
  2. [z] Differentiate [Derivative Properties and Rules]:                                 [tex]\displaystyle dz = 4 \ dx[/tex]
  3. [dv] Rewrite:                                                                                               [tex]\displaystyle \int {} \, dv = \int {e^{4x}} \, dx[/tex]
  4. [dv] Apply Integration Rule [Reverse Power Rule]:                                 [tex]\displaystyle v = \int {e^{4x}} \, dx[/tex]
  5. Rewrite [Integration Property - Multiplied Constant]:                             [tex]\displaystyle v = \frac{1}{4} \int {4e^{4x}} \, dx[/tex]
  6. [Integral] U-Substitution:                                                                           [tex]\displaystyle v = \frac{1}{4} \int {e^u} \, du[/tex]
  7. [v] Apply Exponential Integration:                                                           [tex]\displaystyle v = \frac{e^u}{4}[/tex]
  8. [u] Back-substitute:                                                                                   [tex]\displaystyle v = \frac{e^{4x}}{4}[/tex]

Step 4: Integrate Pt. 3

  1. [Integral] Apply Integration by Parts:                                                       [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \Bigg[ \frac{xe^{4x}}{4} \bigg| \limits^b_0 - \int\limits^b_0 {\frac{e^{4x}}{4}} \, dx \Bigg][/tex]
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:             [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \Bigg[ \frac{xe^{4x}}{4} \bigg| \limits^b_0 - \frac{1}{16} \int\limits^b_0 {4e^{4x} \, dx \Bigg][/tex]
  3. [Integral] Apply U-Substitution:                                                               [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \Bigg[ \frac{xe^{4x}}{4} \bigg| \limits^b_0 - \frac{1}{16} \int\limits^b_0 {e^{u} \, du \Bigg][/tex]
  4. [Integral] Apply Exponential Integration:                                                 [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \Bigg[ \frac{xe^{4x}}{4} \bigg| \limits^b_0 - \frac{1}{16} \bigg( e^u \bigg) \bigg| \limits^{x = b}_{x = 0} \Bigg][/tex]
  5. [u] Back-substitute:                                                                                   [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \Bigg[ \frac{xe^{4x}}{4} \bigg| \limits^b_0 - \frac{1}{16} \bigg( e^{4x} \bigg) \bigg| \limits^b_0 \Bigg][/tex]
  6. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:       [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} \Bigg[ \frac{be^{4b}}{4} - \frac{1}{16} \bigg( e^{4b} - 1 \bigg) \Bigg][/tex]
  7. Simplify:                                                                                                     [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \lim_{b \to \infty} e^{4b} \bigg( \frac{b}{4} - \frac{1}{16} \bigg) + \frac{1}{16}[/tex]
  8. [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:                     [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = e^{4(\infty)} \bigg( \frac{\infty}{4} - \frac{1}{16} \bigg) + \frac{1}{16}[/tex]
  9. Simplify:                                                                                                     [tex]\displaystyle \int\limits^{\infty}_0 {xe^{4x}} \, dx = \infty[/tex]

∴ the improper integral tends to and is divergent.

---

Learn more about improper integrals: https://brainly.com/question/14412891

Learn more about calculus: brainly.com/question/23558817

---

Topic: AP Calculus BC (Calculus I + II)

Unit: Integration