Respuesta :

Answer:

Converges at -1

Step-by-step explanation:

The integral converges if the limit exists, if the limit does not exist or if the limit is infinity it diverges.

We will make use of integral by parts to determine:

let:

[tex]u=x[/tex]             [tex]dv=e^(2x)\cdot{dx}[/tex]

[tex]du=dx[/tex]         [tex]v=2\cdot{e^(2x)}[/tex]

[tex]\int\limits^a_b {u} \, dv = uv -\int\limits^a_b {v} \, du[/tex]

[tex]\int\limits^a_b {x\cdot{e^2^x} \, dx =2xe^2^x- \int\limits^a_b {2e^2^x} \, dx[/tex]

[tex]\int\limits^a_b {xe^2^x} \, dx = 2xe^2^x-2e^2^x-C[/tex]

We can therefore determine that if x tends to 0 the limit is -1

[tex]\lim_{x \to \0} 2xe^2^x-2e^2^x=0-1=-1[/tex]

Space

Answer:

The improper integral converges.

[tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \frac{-1}{4}[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                         [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                       [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                    [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                 [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                     [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                   [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method: U-Substitution

Integration by Parts:                                                                                         [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Improper Integral:                                                                                             [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]

Step-by-step explanation:

*Note:

When using integration by parts, ignore the integration constant C when finding v.

Step 1: Define

Identify.

[tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx[/tex]

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Improper Integral]:                                                     [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \int\limits^0_{a} {xe^{2x}} \, dx[/tex]

Step 3: Integrate Pt. 2

Identify variables for integration by parts.

  1. Set u [LIPET]:                                                                                             [tex]\displaystyle u = x[/tex]
  2. [u] Differentiate [Derivative Rule - Basic Power Rule]:                           [tex]\displaystyle du = dx[/tex]
  3. Set dv [LIPET]:                                                                                           [tex]\displaystyle dv = e^{2x} \ dx[/tex]

Find v using u-substitution.

  1. [dv] Set z:                                                                                                   [tex]\displaystyle z = 2x[/tex]
  2. [z] Differentiate [Derivative Properties and Rules]:                                 [tex]\displaystyle dz = 2 \ dx[/tex]
  3. [dv] Rewrite:                                                                                               [tex]\displaystyle \int {} \, dv = \int {e^{2x}} \, dx[/tex]
  4. [dv] Apply Integration Rule [Reverse Power Rule]:                                 [tex]\displaystyle v = \int {e^{2x}} \, dx[/tex]
  5. Rewrite [Integration Property - Multiplied Constant]:                             [tex]\displaystyle v = \frac{1}{2} \int {2e^{2x}} \, dx[/tex]
  6. [Integral] Apply Integration Method [U-Substitution]:                             [tex]\displaystyle v = \frac{1}{2} \int {e^{z}} \, dz[/tex]
  7. [v] Apply Exponential Integration:                                                           [tex]\displaystyle v = \frac{e^z}{2}[/tex]
  8. [z] Back-substitute:                                                                                   [tex]\displaystyle v = \frac{e^{2x}}{2}[/tex]

Step 3: Integrate Pt. 3

  1. [Integral] Apply Integration by Parts:                                                       [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \Bigg[ \frac{xe^{2x}}{2} \bigg| \limits^0_a - \int\limits^0_a {\frac{e^{2x}}{2}} \, dx \Bigg][/tex]
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:             [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \Bigg[ \frac{xe^{2x}}{2} \bigg| \limits^0_a - \frac{1}{4} \int\limits^0_a {2e^{2x}} \, dx \Bigg][/tex]
  3. [Integral] Apply U-Substitution:                                                               [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \Bigg[ \frac{xe^{2x}}{2} \bigg| \limits^0_a - \frac{1}{4} \int\limits^{x = 0}_{x = a} {e^{z}} \, dz \Bigg][/tex]
  4. [Integral] Apply Exponential Integration:                                                 [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \Bigg[ \frac{xe^{2x}}{2} \bigg| \limits^0_a - \frac{1}{4} \bigg( e^z \bigg) \bigg| \limits^{x = 0}_{x = a} \Bigg][/tex]
  5. [z] Back-substitute:                                                                                   [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \Bigg[ \frac{xe^{2x}}{2} \bigg| \limits^0_a - \frac{1}{4} \bigg( e^{2x} \bigg) \bigg| \limits^{0}_{a} \Bigg][/tex]
  6. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:       [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} \Bigg( \frac{-ae^{2a}}{2} - \frac{1 - e^{2a}}{4} \Bigg)[/tex]
  7. Simplify:                                                                                                     [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = \lim_{a \to - \infty} e^{2a} \bigg( \frac{1}{4} - \frac{a}{2} \bigg) - \frac{1}{4}[/tex]
  8. [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:                    [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = e^{2(- \infty)} \bigg( \frac{1}{4} - \frac{- \infty}{2} \bigg) - \frac{1}{4}[/tex]
  9. Simplify:                                                                                                     [tex]\displaystyle \int\limits^0_{- \infty} {xe^{2x}} \, dx = - \frac{1}{4}[/tex]

∴ the improper integral equals to -0.25 and is convergent.

---

Learn more about improper integrals: https://brainly.com/question/14413973

Learn more about calculus: https://brainly.com/question/23558817

---

Topic: AP Calculus BC (Calculus I + II)

Unit: Integration