Respuesta :
Answer:
Diverges
Step-by-step explanation:
We can solve this by using integral by parts:
Let
[tex]u=lnx[/tex] [tex]dv=(1/x)dx[/tex]
[tex]du=(1/x)dx[/tex] [tex]v=lnx[/tex]
[tex]\int\limits {lnx/x} \, dx = (lnx)^2-\int\limits {lnx/x} \, dx[/tex]
We can add
[tex]\int\limits {lnx/x} \, dx[/tex] to both sides
[tex]\int\limits{lnx/x} \, dx = (1/2)\cdot{(lnx)^2}[/tex]
We can evaluate the limit between 2 and infinity.
If x tends to infinity the limit will be infinity and therefore the integral diverges to ∞
Answer:
The improper integral diverges.
[tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \infty[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: \displaystyle \lim_{x \to c} x = c
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Method: U-Substitution
Improper Integral: [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Improper Integral]: [tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \lim_{b \to \infty} \int\limits^{b}_2 {\frac{1}{x} \ln x} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = \ln x[/tex]
- [u] Apply Logarithmic Differentiation: [tex]\displaystyle du = \frac{1}{x} \ dx[/tex]
- [Bounds] Swap: [tex]\displaystyle \left \{ {{x = b \rightarrow u = \ln b} \atop {x = 2 \rightarrow u = \ln 2}} \right.[/tex]
Step 4: Integrate Pt. 3
- [Integral] Apply Integration Method [U-Substitution]: [tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \lim_{b \to \infty} \int\limits^{\ln b}_{\ln 2} {u} \, du[/tex]
- [Integral] Apply Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \lim_{b \to \infty} \frac{u^2}{2} \bigg| \limits^{\ln b}_{\ln 2}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \lim_{b \to \infty} \frac{\ln (b)^2 - \ln (2)^2}{2}[/tex]
- [Limit] Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \frac{\ln (\infty)^2 - \ln (2)^2}{2}[/tex]
- Simplify: [tex]\displaystyle \int\limits^{\infty}_2 {\frac{1}{x} \ln x} \, dx = \infty[/tex]
∴ the improper integral tends to ∞ and is divergent.
---
Learn more about improper integrals: https://brainly.com/question/14412893
Learn more about calculus: https://brainly.com/question/23558817
---
Topic: AP Calculus BC (Calculus I + II)
Unit: Integration