Respuesta :

Answer:

[tex]\frac{dy}{dx}=-\frac{3}{2(1-x)}[/tex]

Step-by-step explanation:

We are given that a function  

[tex]y=ln(1-x)^{\frac{3}{2}}[/tex]

We have to find the derivative of the function  

[tex]y=\frac{3}{2}ln(1-x)[/tex]

By using [tex]lna^b=blna[/tex]

Differentiate w.r.t x

[tex]\frac{dy}{dx}=\frac{3}{2}\times \frac{1}{1-x}\times (-1)[/tex]

By using formula

[tex]\frac{d(lnx)}{dx}=\frac{1}{x}[/tex]

[tex]\frac{dy}{dx}=-\frac{3}{2(1-x)}[/tex]

Hence,the derivative of function

[tex]\frac{dy}{dx}=-\frac{3}{2(1-x)}[/tex]

Answer:

[tex]\frac{dy}{dx} = 3/2 [ \frac{f'x}{fx}] =3/2[ \frac{-1}{ 1-x}][/tex]

Step-by-step explanation:

we need to determine the derivative for given logrithm function

function is [tex]y = ln(1-x) \frac{3}{2}[/tex]

we knwo that

derivative of log function it form of y = ln f(x) is

[tex]\frac{dy}{dx} = \frac{f'x}{fx}[/tex]

so differentiate f'x

take u = 1- x =  fx

f'x =  du/dx = -1

[tex]\frac{dy}{dx} = 3/2 [ \frac{f'x}{fx}] =3/2[ \frac{-1}{ 1-x}][/tex]