Answer:
[tex]ln(4)+ln(x)+ln(x-7)-2ln(x)[/tex]
Step-by-step explanation:
[tex]ln \frac{4x(x-7)}{x^2}[/tex]
Apply log properties
[tex]ln(mn)= ln m + ln n[/tex]
[tex]ln \frac{4x(x-7)}{x^2}[/tex]
[tex]\frac{ln(4x)+ln(x-7)}{x^2}[/tex]
[tex]ln(\frac{m}{n} )=ln(m)-ln(n)[/tex]
[tex]\frac{ln(4x)+ln(x-7)}{x^2}[/tex]
[tex]ln(4x)+ln(x-7)-ln(x^2)[/tex]
[tex]ln(4x)+ln(x-7)-2ln(x)[/tex]
[tex]ln(4)+ln(x)+ln(x-7)-2ln(x)[/tex]