Respuesta :

Space

Answer:

The improper integral diverges.

[tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \infty[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                         [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                       [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                     [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                               [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                 [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                     [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                   [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method: U-Substitution

Integration by Parts:                                                                                           [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Improper Integral:                                                                                             [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]

Step-by-step explanation:

*Note:

When using integration by parts, ignore the integration constant C when finding v.

Step 1: Define

Identify.

[tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx[/tex]

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Improper Integral]:                                                     [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \lim_{b \to \infty} \int\limits^{b}_1 {\ln |x|} \, dx[/tex]

Step 3: Integrate Pt. 2

Identify variables for integration by parts.

  1. Set u [LIPET]:                                                                                             [tex]\displaystyle u = \ln |x|[/tex]
  2. [u] Apply Logarithmic Differentiation [Derivative Rule - Chain Rule]:   [tex]\displaystyle du = \frac{1}{|x|} \frac{d}{dx} |x| \ dx[/tex]
  3. [du] Apply Absolute Value Differentiation:                                             [tex]\displaystyle du = \frac{1}{|x|} \frac{|x|}{x} \ dx[/tex]
  4. [du] Simplify:                                                                                             [tex]\displaystyle du = \frac{1}{x} \ dx[/tex]
  5. Set dv [LIPET]:                                                                                           [tex]\displaystyle dv = dx[/tex]
  6. [dv] Rewrite:                                                                                               [tex]\displaystyle \int {} \, dv = \int {} \, dx[/tex]
  7. [dv] Apply Integration Rule [Reverse Power Rule]:                                 [tex]\displaystyle v = x[/tex]

Step 4: Integrate Pt. 3

  1. [Integral] Apply Integration by Parts:                                                       [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \lim_{b \to \infty} \Bigg[ \bigg( x \ln |x| \bigg) \bigg| \limits^b_1 - \int\limits^b_1 {\frac{x}{x}} \, dx \bigg][/tex]
  2. [Integral] Simplify:                                                                                     [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \lim_{b \to \infty} \Bigg[ \bigg( x \ln |x| \bigg) \bigg| \limits^b_1 - \int\limits^b_1 {} \, dx \bigg][/tex]
  3. [Integral] Apply Integration Rule [Reverse Power Rule]:                       [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \lim_{b \to \infty} \Bigg[ \bigg( x \ln |x| \bigg) \bigg| \limits^b_1 - x \bigg| \limits^b_1 \bigg][/tex]
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:      [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \lim_{b \to \infty} \bigg[ b \ln |b| - \Big( b - 1 \Big) \bigg][/tex]
  5. [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:                     [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \infty \ln | \infty | - \Big( \infty - 1 \Big)[/tex]
  6. Simplify:                                                                                                     [tex]\displaystyle \int\limits^{\infty}_1 {\ln |x|} \, dx = \infty[/tex]

∴ the improper integral tends to and is divergent.

---

Learn more about improper integrals: https://brainly.com/question/14413972

Learn more about calculus: https://brainly.com/question/23558817

---

Topic: AP Calculus BC (Calculus I + II)

Unit: Integration