Finding Limits and Relative Extrema Use spreadsheet to complete the table using
f(x) = In x/x.
x 1 5 10 10^2 10^4 10^6
f(x)
(a) Use the table to estimate the limit: lim f(x).
(b) Use a graphing utility to estimate the relative extrema of f.

Respuesta :

Answer:

a) 0 b) Maximum (2<x<3, 0<y<1)

Step-by-step explanation:

a) Through the table we can estimate the value of the limit as 0, since it starts with 0 goes up and then goes down to 0

Verifying:

[tex]\lim_{x\rightarrow \infty}\frac{ln(x)}{x}\Rightarrow \lim_{x\rightarrow \infty}\frac{\frac{\mathrm{d} }{\mathrm{d} x}[ln(x)]}{\frac{\mathrm{d} }{\mathrm{d} x}[x]}\Rightarrow \lim_{x\rightarrow \infty}\frac{\frac{1}{x}}{1}\Rightarrow \frac{\lim_{x\rightarrow \infty}1}{\lim_{x\rightarrow \infty}x}=0[/tex]

b) The Relative extrema was estimated here using Geogebra. Estimating  it considering [0,5] we could say: (2<x<3, 0<y<1). Calculating it using Geogebra applet:

[tex](e,\frac{1}{e})=(2.72,0.36)[/tex]

Ver imagen profantoniofonte
Ver imagen profantoniofonte
Ver imagen profantoniofonte