Answer:
[tex]\Delta T =11.904\ K[/tex]
Explanation:
given,
total gas molecule , N = 6 x 10²⁶
Power,P = 125 W
Δ t = 19 min = 19 x 60 s
Δ T = ?
Power,
[tex]P = \dfrac{energy}{time}[/tex]
[tex]E_n=P\times \Delta t[/tex]
[tex]E_n=125\times 19\times 60[/tex]
[tex]E_n=142500\ J[/tex]
we now,
[tex]E_n = \dfrac{3}{2}Nk_b\Delta T[/tex]
[tex]\Delta T = \dfrac{E_n}{\dfrac{3}{2}Nk_b}[/tex]
where as, k_b = 1.38 x 10⁻²³ J/K
[tex]\Delta T = \dfrac{142500}{\dfrac{3}{2}\times 6 \times 10^{26}\times 1.38 \times 10^{-23}}[/tex]
[tex]\Delta T =11.904\ K[/tex]
The increase in temperature is equal to [tex]\Delta T =11.904\ K[/tex]