Determine whether the improper integral converges or diverges, and find the value of each that converges.
∫^[infinity]_1 1/x^^0.999 dx

Respuesta :

Answer:

Divergent.

Step-by-step explanation:

We have been given an integral [tex]\int\limits^\infty _1 {\frac{1}{x^{0.999}} \, dx[/tex]. We are asked to determine whether the given integral diverges or converges.

[tex]\int _1^{\infty }\:\:\:\frac{1}{x^{0.999}}\:\:\:dx[/tex]

[tex]\int _1^{\infty }\:\:\:\frac{1}{x^{0.999}}\:\:\:dx=\int _1^{\infty }\:\:\:x^{-0.999}\:\:\:dx[/tex]

[tex]\int _1^{\infty }\:\:\:x^{-0.999}\:\:\:dx=\frac{x^{-0.999+1}}{-0.999+1}[/tex]

[tex]\int _1^{\infty }\:\:\:x^{-0.999}\:\:\:dx=\frac{x^{0.001}}{0.001}[/tex]

[tex]\int _1^{\infty }\:\:\:x^{-0.999}\:\:\:dx=1000x^{0.001}[/tex]

Let us compute the boundaries.

[tex]1000(\infty)^{0.001}=\infty[/tex]

[tex]1000(1)^{0.001}=1000[/tex]

Since [tex]\infty-1000[/tex] is not a finite number, therefore, the given integral diverges.