Condensing Logarithmic Expression In Exercise,use the properties of logarithms to rewrite the expression as the logarithm of a single quantity.See example 4.
1/3[2 In(x + 3) + In x - In(x^2 - 1)]

Respuesta :

Answer:

[tex][\frac{ln x(x + 3)^2}{x^2 - 1}]^\frac{1}{3} [/tex]

Step-by-step explanation:

1/3[2 In(x + 3) + In x - In(x^2 - 1)]

[tex]\frac{1}{3} [2 ln(x + 3) + ln x - ln(x^2 - 1)][/tex]

m ln(x)= lnx^m

move the term before ln to the exponent

[tex]\frac{1}{3} [ln(x + 3)^2 + ln x - ln(x^2 - 1)][/tex]

ln m + ln n= ln(mn)

[tex]\frac{1}{3} [ln x(x + 3)^2- ln(x^2 - 1)][/tex]

ln m - ln  n = ln(m/n)

[tex]\frac{1}{3} [\frac{ln x(x + 3)^2}{x^2 - 1}][/tex]

Now move fraction 1/3 to the exponent

[tex][\frac{ln x(x + 3)^2}{x^2 - 1}]^\frac{1}{3} [/tex]