Using Properties of logarithms In Exercise,Use the properties of logarithms and a fact that In 2≈ 0.6931 and In 3 ≈1.0986 to approximate the logarithm.Then use a calculator to confirm your approximation.
(a) In 6
(b) In 3/2
(c) In 81
(d) In (3)1/2

Respuesta :

Answer:

1) 1.7917

2) 0.4055

3) 4.3944

4) 0.5493

Step-by-step explanation:

We are given the following:

[tex]\ln 2 \approx 0.6931\\\ln 3 \approx 1.0986[/tex]

We have to evaluate the following:

1) In 6

Logarithmic property:

[tex]\ln (a\times b) = \ln a  + \ln b[/tex]

[tex]\ln 6 = \ln (2\times 3)\\= \ln 2 +\ln 3\\= 0.6931 + 1.0986\\=1.7917[/tex]

2) [tex]\ln (\frac{3}{2})[/tex]

Logarithmic property:

[tex]\ln \dfrac{a}{b} = \ln a - \ln b[/tex]

[tex]\ln \dfrac{3}{2} = \ln 3 - \ln 2 \\\\= 1.0986 - 0.6931\\=0.4055[/tex]

3) In 81

Logarithmic property:

[tex]\ln(a^x) = x\ln a[/tex]

[tex]\ln 81 = \ln(3^4)\\=4\ln 3\\=4\times 1.0986\\=4.3944[/tex]

4) [tex]\ln (3)^{\frac{1}{2}}[/tex]

Logarithmic property:

[tex]\ln(a^x) = x\ln a[/tex]

[tex]\ln (3)^{\frac{1}{2}}\\\\=\dfrac{1}{2}\ln 3\\\\=\dfrac{1}{2}\times 1.0986\\\\=0.5493[/tex]