Expanding logarithmic Expression In Exercise,Use the properties of logarithms to rewrite the expression as a sum,difference,or multipal of logarithms.See example 3.
In 2x/(x^2 - 1)1/2

Respuesta :

Answer:

[tex]\frac{1}{2}ln(2x)-\frac{1}{2}ln(x^2-1)[/tex]

Step-by-step explanation:

In 2x/(x^2 - 1)1/2

[tex]ln(\frac{2x}{x^2-1} )^\frac{1}{2}[/tex]

Apply the property of natural log

ln x^m = m ln(x) move the exponent before ln

[tex]ln(\frac{2x}{x^2-1} )^\frac{1}{2}[/tex]

[tex]\frac{1}{2}ln(\frac{2x}{x^2-1})[/tex]

ln(m/n)= ln m - ln n

[tex]\frac{1}{2}(ln(2x)-ln(x^2-1))[/tex]

multiply 1/2 inside the terms

[tex]\frac{1}{2}ln(2x)-\frac{1}{2}ln(x^2-1)[/tex]