Respuesta :

Answer:Divergent

Step-by-step explanation:

Given

Improper Integral I is given as

[tex]I=\int^{\infty}_{4}\frac{2}{\sqrt{x}}dx[/tex]

Integration of [tex]\frac{2}{\sqrt{x}}[/tex]  is  [tex]4\sqrt{2}[/tex]

[tex]I=\left [ 4\sqrt{x}\right ]^{\infty}_{4}[/tex]

[tex]I=4\left [ \sqrt{x}\right ]^{\infty}_{4}[/tex]

[tex]I=4\left [ \sqrt{\infty}-\sqrt{4}\right ][/tex]

I tends to [tex]\infty[/tex] so Integral is divergent in nature

             

Space

Answer:

The improper integral diverges.

[tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \infty[/tex]

General Formulas and Concepts:
Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                         [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                       [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                 [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                     [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                   [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Property [Splitting Integral]:                                                           [tex]\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx[/tex]

Integration Method: U-Substitution

Improper Integrals:                                                                                           [tex]\displaystyle \int\limits^{\infty}_a {f(x)} \, dx = \lim_{b \to \infty} \int\limits^b_a {f(x)} \, dx[/tex]

Step-by-step explanation:

*Note:

This is a doubly improper integral, as we have infinity as a bound and an infinite discontinuity at x = 4, which is another bound.

Step 1: Define

Identify.

[tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx[/tex]

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Splitting Integral]:                   [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \int\limits^{9}_4 {\frac{2}{\sqrt{x}}} \, dx + \int\limits^{\infty}_9 {\frac{2}{\sqrt{x}}} \, dx[/tex]
  2. [Integrals] Rewrite [Improper Integral]:                                                   [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \lim_{a \to 4} \int\limits^{9}_a {\frac{2}{\sqrt{x}}} \, dx + \lim_{b \to \infty} \int\limits^{b}_9 {\frac{2}{\sqrt{x}}} \, dx[/tex]
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:           [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \lim_{a \to 4} 2 \int\limits^{9}_a {\frac{1}{\sqrt{x}}} \, dx + \lim_{b \to \infty} 2 \int\limits^{b}_9 {\frac{1}{\sqrt{x}}} \, dx[/tex]
  4. [Integrals] Apply Integration Rule [Reverse Power Rule]:                       [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \lim_{a \to 4} 2 \bigg( 2\sqrt{x} \bigg) \bigg| \limits^{9}_a + \lim_{b \to \infty} 2 \bigg( 2\sqrt{x} \bigg) \bigg| \limits^{b}_9[/tex]
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:       [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \lim_{a \to 4} 2 \big( 6 - 2\sqrt{a} \big) + \lim_{b \to \infty} 2 \big( 2\sqrt{b} - 6 \big)[/tex]
  6. Simplify:                                                                                                     [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \lim_{a \to 4} 4 \big( 3 - \sqrt{a} \big) + \lim_{b \to \infty} 4 \big( \sqrt{b} - 3 \big)[/tex]
  7. [Limits] Evaluate [Limit Rule - Variable Direct Substitution]:                   [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = 4 \big( 3 - \sqrt{4} \big) + 4 \big( \sqrt{\infty} - 3 \big)[/tex]
  8. Simplify:                                                                                                     [tex]\displaystyle \int\limits^{\infty}_4 {\frac{2}{\sqrt{x}}} \, dx = \infty[/tex]

∴ the improper integral tends to and is divergent.

---

Learn more about improper integrals: https://brainly.com/question/14414145

Learn more about calculus: brainly.com/question/23558817

---

Topic: AP Calculus BC (Calculus I + II)

Unit: Integration