Bromine-88 is radioactive and has a half life of 16.3 seconds. Calculate the activity of a 3.2 mg sample of bromine-88. Give your answer in becquerels and in curies. Be sure your answer has the correct number of significant digits.

Respuesta :

Answer:

[tex]9.31\times 10^{17}\ Bq[/tex]

[tex]2.52\times 10^{7}\ Ci[/tex]

Explanation:

Calculation of the moles of Bromine-88 as:-

Mass = 3.2 mg  

Also, 1 mg = 0.001 g

So, Mass = [tex]0.0032\ g[/tex]

Molar mass of Bromine-88 = 88 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]Moles= \frac{0.0032\ g}{88\ g/mol}[/tex]

1 mole of Bromine-88 contains  [tex]6.023\times 10^{23}[/tex] atoms of Bromine-88

So,  

[tex]\frac{0.0032}{88}[/tex] mole of Bromine-88 contains  [tex]\frac{0.0032}{88}\times 6.023\times 10^{23}[/tex] atoms of Bromine-88

Atoms of Bromine-88 in the sample = [tex]2.19\times 10^{19}[/tex]  

Given that:

Half life = [tex]16.3[/tex] s

The expression for half-life is:-

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac{\ln2}{16.3}\ s^{-1}[/tex]

The rate constant, k = 0.04252 s⁻¹

Disintegration is:-

Disintegrations per second = Rate constant*Number of atoms = [tex]0.04252\times 2.19\times 10^{19}\ Bq[/tex] = [tex]9.31\times 10^{17}\ Bq[/tex]

Considering that:-

1 Bq = [tex]2.7\times 10^{-11}[/tex] Ci

Thus, disintegrations = [tex]9.31\times 10^{17}\times 2.7\times 10^{-11}\ Ci[/tex] = [tex]2.52\times 10^{7}\ Ci[/tex]