Answer:
5x + 2
Step-by-step explanation:
Since logarithm has the following property:
If [tex]f(x)=b^x[/tex] and [tex]g(x)=\log_bx[/tex],
Then [tex]fog=b^{\log_bx}=x[/tex] and [tex]gof=\log_bbx=x[/tex]
Therefore,
[tex]e^{\ln(5x + 2)}=e^{\log_e(5x+2)}=5x+2[/tex]