Answer:
[tex]a.b =19[/tex]
Step-by-step explanation:
We are given the following in the question:
[tex]a=\langle 4,1,\frac{1}{4} \rangle, b=\langle 6,-3,-8\rangle[/tex]
We have to find the dot product.
Formula:
[tex]a = \langle x_1,x_2,x_3\rangle\\b = \langle y_1.y_2,y_3\rangle\\a.b = x_1y_1 + x_2y_2 + x_3y_3[/tex]
Putting the corresponding values we get,
[tex]a.b = (4.6) + (1.-3) + (\frac{1}{4}.-8)\\= 24-3-2\\=19[/tex]
[tex]a.b =19[/tex]