Respuesta :

Answer:

the question is incomplete, the complete question is

"Finding Derivatives Implicity In Exercise,Find dy/dx implicity . [tex]x^{2}e^{-x}+2y^{2}-xy[/tex]"

Answer : [tex]\frac{dy}{dx}=\frac{y-(2-x)xe^{-x}}{(4y-x)}[/tex]

Step-by-step explanation:

From the expression  [tex]x^{2}e^{-x}+2y^{2}-xy[/tex]" y is define as an implicit function of x, hence we differentiate each term of the equation with respect to x.

we arrive at

[tex]\frac{d}{dx}(x^{2}e^{-x )+\frac{d}{dx} (2y^{2})-\frac{d}{dx}xy=0\\[/tex]

for the expression [tex]\frac{d}{dx}(x^{2}e^{-x})[/tex] we differentiate using the product rule, also since y^2 is a function of y which itself is a function of x, we have

[tex](2xe^{-x}-x^{2}e^{-x})+4y\frac{dy}{dx}-x\frac{dy}{dx} -y=0\\\\(2-x)xe^{-x}+(4y-x)\frac{dy}{dx}-y=0 \\[/tex].

if we make dy/dx  subject of formula we arrive at

[tex](4y-x)\frac{dy}{dx}=y-(2-x)xe^{-x}\\\frac{dy}{dx}=\frac{y-(2-x)xe^{-x}}{(4y-x)}[/tex]