Respuesta :

Answer: The second derivative would be  [tex]f''(x)=18e^{3x}+12e^{-2x}[/tex]

Step-by-step explanation:

Since we have given that

[tex]f(x)=2e^{3x}+3e^{-2x}[/tex]

We will first find the first derivative w.r.t 'x'.

As we know that

[tex]e^{mx}=me^x\\\\e^{-nx}=-ne^{-nx}[/tex]

So, it becomes,

[tex]f'(x)=6e^{3x}-6xe^{-2x}[/tex]

Now, the second derivative w.r.t 'x' would be

[tex]f''(x)=6\times 3e^{3x}-6\times -2e^{-2x}=18e^{3x}+12e^{-2x}[/tex]

Hence, the second derivative would be  [tex]f''(x)=18e^{3x}+12e^{-2x}[/tex]