Respuesta :

Answer: [tex]a\cdot b= -7.5[/tex]

Step-by-step explanation:

Formula : If a and b be any two vector , then the dot product of and b is given by [tex]a\cdot b= |a||b|\cos {\theta}[/tex] , where [tex]\theta[/tex] is the angle between them.

As per given , we have

IaI =3, IbI = 5 [tex]\theta =\dfrac{2\pi}{3}[/tex]

Then, [tex]a\cdot b= (3)(5)\cos \dfrac{2\pi}{3}[/tex]

[tex]a\cdot b= (15)\cos ( \pi-\dfrac{\pi}{3})[/tex]

[tex]a\cdot b= (15)(-\cos \dfrac{\pi}{3})[/tex] (∵ cos (π-x)=-cos x)

[tex]a\cdot b= (15)(-\dfrac{1}{2})[/tex]  [∵[tex]\cos \dfrac{\pi}{3}=\dfrac{1}{2}[/tex] ]

[tex]a\cdot b= -7.5[/tex]

Therefore , [tex]a\cdot b= -7.5[/tex]