Answer:
f'(x)[tex]=2(e^4^x)+(x^2+1)(4e^4^x)[/tex]
Step-by-step explanation:
The derivative of the function:
[tex](x^2+1)e^4^x[/tex]
The rule for the product of two functions:
f'(x)[tex]=g'(x)h(x)+g(x)h'(x)[/tex]
Therefore
g(x)[tex]=x^2+1[/tex]
g'(x)[tex]=2[/tex]
f(x)[tex]=e^4^x[/tex]
f'(x)[tex]=4e^4^x[/tex]
f'(x)[tex]=2(e^4^x)+(x^2+1)(4e^4^x)[/tex]