Respuesta :

Answer: [tex]-2xe^{-x^2}[/tex]

Step-by-step explanation:

Let u be a differentiable function , then

[tex]\dfrac{d}{dx}(e^x)=e^x[/tex]

[tex]\dfrac{d}{dx}e^u=e^u\dfrac{du}{dx}[/tex]              (1)

Given function : [tex]y = e^{-x^2}[/tex]

Differentiate both sides with respect to x , we get

[tex]y'=e^{-x^2}\dfrac{d(-x^2)}{dx}[/tex]  (By using  (1))

[tex]\Rightarrow\ y'=e^{-x^2}(-2x)[/tex]  [∵ [tex]\dfrac{d}{dx}(x^n)=x^{n-1}[/tex]]

[tex]\Rightarrow\ y'=-2xe^{-x^2}[/tex]

Hence, the derivative of the given function is [tex]-2xe^{-x^2}[/tex] .