Respuesta :

Answer: [tex]e^x (x- e^{x})[/tex]

Step-by-step explanation:

The given expression is [tex]xe^x - e^{2x}[/tex]

We can write [tex]e^{2x}[/tex] as [tex]e^{x+x} = e^x \cdot e^x[/tex]

[[tex]\because a^{m+n}=a^m\cdot a^n[/tex]]  → Property of exponents

Now , the the given expression  [tex]xe^x - e^{x+x}[/tex]  will become [tex]xe^x - e^{x}\cdot e^x[/tex]

Taking [tex]e^x[/tex] out as common (Greatest common factor) , we get

[tex]e^x (x- e^{x})[/tex] → Required factor form.

Hence, the answer is [tex]e^x (x- e^{x})[/tex].