Respuesta :

Answer:

[tex]f_{avg}=\frac{1}{e-1}[/tex]

Step-by-step explanation:

We are given that a function

[tex]f(x)=2lnx[/tex]

We have to find the average value of function on the given interval [1,e]

Average value of function on interval [a,b] is given by

[tex]\frac{1}{b-a}\int_{a}^{b}f(x)dx[/tex]

Using the formula

[tex]f_{avg}=\frac{1}{e-1}\int_{1}^{e}lnx dx[/tex]

By Parts integration formula

[tex]\int(uv)dx=u\int vdx-\int(\frac{du}{dx}\int vdx)dx[/tex]

u=ln x and v=dx

Apply by parts integration

[tex]f_{avg}=\frac{1}{e-1}([xlnx]^{e}_{1}-\int_{1}^{e}(\frac{1}{x}\times xdx))[/tex]

[tex]f_{avg}=\frac{1}{e-1}(elne-ln1-[x]^{e}_{1})[/tex]

[tex]f_{avg}=\frac{1}{e-1}(e-0-e+1)=\frac{1}{e-1}[/tex]

By using property lne=1,ln 1=0

[tex]f_{avg}=\frac{1}{e-1}[/tex]