Respuesta :

Answer:

[tex]f_{avg}=e-1[/tex]

Step-by-step explanation:

We are given that a function

[tex]f(x)=e^{\frac{x}{7}}[/tex]

We have to find the average value of function on the given interval [0,7]

Average value of function on interval [a,b] is given by

[tex]\frac{1}{b-a}\int_{a}^{b}f(x)dx[/tex]

Using the formula

[tex]f_{avg}=\frac{1}{7-0}\int_{0}^{7}e^{\frac{x}{7}} dx[/tex]

[tex]f_{avg}=\frac{1}{7}[e^{\frac{x}{7}}\times 7)]^{7}_{0}[/tex]

By using the formula

[tex]\int e^{ax}=\frac{e^{ax}}{a}[/tex]

[tex]f_{avg}=(e-e^0)=e-1[/tex]

Because [tex]e^0=1[/tex]

[tex]f_{avg}=e-1[/tex]

Hence, the average value of function on interval [0,7]

[tex]f_{avg}=e-1[/tex]