Answer:
The total profit P(x) or the month is [tex]P(x)=-0.5x^2+500x-350[/tex].
Step-by-step explanation:
A company produces x units of a product per month.
The total cost represents by the function C(x).
[tex]C(x)=300x+250[/tex]
The total revenue represents by the function R(x).
[tex]R(x)=-0.5x^2+800x-100[/tex]
The profit is the difference between revenue and cost.
[tex]P(x)=R(x)-C(x)[/tex]
[tex]P(x)=-0.5x^2+800x-100-(300x+250)[/tex]
[tex]P(x)=-0.5x^2+800x-100-300x-250[/tex]
Combine like terms.
[tex]P(x)=-0.5x^2+(800x-300x)+(-100-250)[/tex]
[tex]P(x)=-0.5x^2+500x-350[/tex]
Therefore, the total profit P(x) or the month is [tex]P(x)=-0.5x^2+500x-350[/tex].