Applying properties of Exponents in exercise,use the properties of exponents to simplify the expression.See example 1.
(a) 5^3/25^2
(b) (92/3)(3)(32/3)
(c) [(251/2)(52)]1/3
(d) (82)(43)

Respuesta :

Answer: a) [tex]\dfrac{1}{5}[/tex] b) 27 c) 5 d) [tex]2^{12}=4096[/tex]

Step-by-step explanation:

Properties of exponent :

  1. [tex]a^m\times a^n= a^{m+n}[/tex]
  2. [tex]\dfrac{a^m}{a^n}=a^{m-n}[/tex]
  3. [tex](a^m)^n=a^{mn}[/tex]
  4. [tex]a^{-n}=\dfrac{1}{a^n}[/tex]

By using above properties we simplify the given expressions.

a) [tex]\dfrac{5^3}{25^2}=\dfrac{5^3}{(5^2)^2}[/tex]

[tex]=\dfrac{5^3}{5^4}[/tex]  [ By using (3)]

[tex]=5^{3-4}=5^{-1}[/tex]   [ By using (2)]

[tex]=\dfrac{1}{5}[/tex] [ By using (4)]

b) [tex](9^{\frac{2}{3}})(3)(3^{\frac{3}{2}})[/tex]

[tex]=((3^{2})^{\frac{2}{3}})(3^{1+\frac{3}{2}})[/tex]    [ By using (1)]

[tex]=(3^{\frac{4}{3}})(3^{\frac{5}{2}})[/tex]   [ By using (3)]

[tex]=3^{\frac{4}{3}+\frac{5}{3}}[/tex]   [ By using (1)]

[tex]=3^{\frac{4+5}{3}}=3^{\frac{9}{3}=3^3=27}[/tex]  

c) [tex][(25)^\frac{1}{2}(5^2)]^{\frac{1}{3}} =[(5^2)^\frac{1}{2}(5^2)]^\frac{1}{3}[/tex]

[tex]=[(5)(5^2)]^\frac{1}{3}[/tex]    [ By using (3)]

[tex]=[5^{1+2}]^\frac{1}{3}[/tex]    [ By using (1)]

[tex]=5^{3\times\frac{1}{3}})= 5[/tex]  [ By using (3)]

d) [tex](8^2)(4^3)= (2^3)^2((2^2)^3)[/tex]   [ By using (5)]

[tex]=(2^6)(2^6)[/tex]  [ By using (3)]

[tex]=2^{6+6}=2^{12}=4096[/tex]