Rate of Change of Revenue The rate of change of revenue (in dollars per calculator) from the sale of x calculators is
R'(x)=(x+1)ln(x+1).
Find the total revenue from the sale of the first 12 calculators. (Hint: In this exercise, it simplifies matters to write an anti-derivative of x+1 as (x+1)2/2 rather than x^2/2+x).

Respuesta :

Assuming no revenue from no calculators being sold, so that [tex]R(0)=0[/tex], we have

[tex]R(12)=R(0)+\displaystyle\int_0^{12}R'(x)\,\mathrm dx[/tex]

[tex]R(12)=\displaystyle\int_0^{12}(x+1)\ln(x+1)\,\mathrm dx[/tex]

Integrate by parts, taking

[tex]u=\ln(x+1)\implies\mathrm du=\dfrac{\mathrm dx}{x+1}[/tex]

[tex]\mathrm dv=x+1\,\mathrm dx\implies v=\dfrac{(x+1)^2}2[/tex]

Then

[tex]R(12)=\displaystyle\frac{(x+1)^2}2\ln(x+1)\bigg|_0^{12}-\frac12\int_0^{12}x+1\,\mathrm dx[/tex]

[tex]R(12)=\dfrac{169}2\ln13-\dfrac{(x+1)^2}4\bigg|_0^{12}[/tex]

[tex]R(12)=\dfrac{169}2\ln13-\left(\dfrac{169}4-\dfrac14\right)\approx174.74[/tex]