Respuesta :

Answer:  [tex]\dfrac{x^2}{(x^3+1)}[/tex]

Step-by-step explanation

Properties of derivative , we use here :

  • [tex]\dfrac{d}{dx}(\ln x)=\dfrac{1}{x}[/tex]
  • [tex]\dfrac{d}{dx}(x^n)=n(x)^{n-1}[/tex]
  • [tex]\dfrac{d}{dx}(a)=0[/tex] , where a is constant.

The given function : [tex]y=\ln(x^3+1)^{\frac{1}{3}}[/tex]

[tex]y=\dfrac{1}{3}\cdot \ln (x^3+1)[/tex]  [[tex]\because n\ln x=\ln x^n[/tex]]

Now , Differentiate both sides , we get

[tex]\dfrac{dy}{dx}=\dfrac{1}{3}\cdot \dfrac{1}{(x^3+1)}\cdot \dfrac{d}{dx}(x^3+1)[/tex]

(By chain rule)

[tex]=\dfrac{1}{3}\cdot \dfrac{1}{(x^3+1)}\cdot (3x^2+0)[/tex]

[tex]=\dfrac{1}{3}\cdot \dfrac{1}{(x^3+1)}(3x^2)[/tex]

[tex]=\dfrac{x^2}{(x^3+1)}[/tex]

Hence, the derivative of the function will be : [tex]\dfrac{x^2}{(x^3+1)}[/tex]