Respuesta :
Answer:
See explanation.
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
*Note:
Treat a and n as arbitrary constants.
Step 1: Define
Identify
[tex]\displaystyle \int {x^ne^{ax}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = x^n[/tex]
- [u] Basic Power Rule: [tex]\displaystyle du = nx^{n - 1} \ dx[/tex]
- Set dv: [tex]\displaystyle dv = e^{ax} \ dx[/tex]
- [dv] Exponential Integration [U-Substitution]: [tex]\displaystyle v = \frac{e^{ax}}{a}[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by Parts: [tex]\displaystyle \int {x^ne^{ax}} \, dx = \frac{x^na^{ax}}{a} - \int {\frac{nx^{n - 1}e^{ax}}{a}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {x^ne^{ax}} \, dx = \frac{x^na^{ax}}{a} - \frac{n}{a} \int {x^{n - 1}e^{ax}} \, dx ,\ a \neq 0[/tex]
∴ We have verified/derived the formula.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration