Respuesta :

Answer:

The value of x is about 2.206.

Step-by-step explanation:

Consider the given equation is

[tex]2\ln x+\ln (x-2)=0[/tex]

We need to find the value of x.

Using the properties of logarithm we get

[tex]\ln x^2+\ln (x-2)=0[/tex]            [tex][\because \ln a^b=b\ln a][/tex]

[tex]\ln (x^2(x-2))=0[/tex]             [tex][\because \ln (ab)=\ln a+\ln b][/tex]

[tex]\ln (x^2(x-2))=ln 1[/tex]              [tex][\because \ln 1=0][/tex]

On comparing both sides we get

[tex]x^2(x-2)=1[/tex]

[tex]x^3-2x^2=1[/tex]

Using graphing calculator, the real solution of the above equation is

[tex]x\approx 2.206[/tex]

Therefore, the value of x is about 2.206.