Condensing Logarithmic Expressions In Exercise, use the properties of logarithms to rewrite the expression as the logarithm of a single quantity.
1/3 In(x^2 - 6) - 2 In (3x + 2)

Respuesta :

Answer:

[tex]\ln (\dfrac{(x^2-6)^{\frac{1}{3}}}{(3x+2)^2})[/tex]

Step-by-step explanation:

The given expression is

[tex]\dfrac{1}{3}\ln (x^2-6)-2\ln (3x+2)[/tex]

We need to rewrite the expression as the logarithm of a single quantity.

Using the properties of logarithm we get

[tex]\ln (x^2-6)^{\frac{1}{3}}-\ln (3x+2)^2[/tex]         [tex][\because \log a^b = b\log a][/tex]

[tex]\ln (\dfrac{(x^2-6)^{\frac{1}{3}}}{(3x+2)^2})[/tex]         [tex][\because \log a-log b = \log (\frac{a}{b})][/tex]

Therefore, the simplified form of the given expression is [tex]\ln (\dfrac{(x^2-6)^{\frac{1}{3}}}{(3x+2)^2})[/tex].