Expanding Logarithmic Expressions In Exercise, use the properties of logarithms to rewrite the expression as a sum, difference, or multiple of logarithms.
In (x^2 - 1)^1/3

Respuesta :

Answer:  [tex]\dfrac{1}{3}[\ln (x+1)+\ln(x-1)][/tex]

Step-by-step explanation:

Properties of logarithm :

  1. [tex]\log (ab)= \log a+\log b[/tex]
  2. [tex]\log(\dfrac{a}{b})=\log a-\log b[/tex]
  3. [tex]\log a^n= n\log a[/tex]

The given expression in terms of Natural log : [tex] \ln (x^2 - 1)^{\frac{1}{3}}[/tex]

This will become [tex]\dfrac{1}{3}\ln (x^2 - 1)[/tex]      [ By using Property (3)]

[tex]=\dfrac{1}{3}\ln (x^2-1^2)[/tex]

[tex]=\dfrac{1}{3}\ln ((x+1)(x-1))[/tex]   [[tex]\because a^2-b^2=(a+b)(a-b)[/tex]]

[tex]=\dfrac{1}{3}[\ln (x+1)+\ln(x-1)][/tex]   [ By using Property (1)]

Hence, the simplified expression becomes [tex]\dfrac{1}{3}[\ln (x+1)+\ln(x-1)][/tex] .