Respuesta :
Answer:
[tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \frac{2(x + 4)^\Big{\frac{3}{2}}(15x^2 - 48x + 128)}{105} + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
- U-Solve
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-solve.
- Set u: [tex]\displaystyle u = x + 4[/tex]
- [u] Rewrite: [tex]\displaystyle x = u - 4[/tex]
- [u] Manipulate: [tex]\displaystyle x^2 = (u - 4)^2[/tex]
- [u] Basic Power Rule: [tex]\displaystyle du = dx[/tex]
Step 3: Integrate Pt. 2
- [Integral] U-Solve: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \int {(u - 4)^2\sqrt{u}} \, dx[/tex]
- [Integrand] Rewrite: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \int {u^\Big{\frac{5}{2}} - 8u^\Big{\frac{3}{2}} + 16u^\Big{\frac{1}{2}}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \int {u^\Big{\frac{5}{2}}} \, dx - \int {8u^\Big{\frac{3}{2}}} \, dx + \int {16u^\Big{\frac{1}{2}}} \, dx[/tex]
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \int {u^\Big{\frac{5}{2}}} \, dx - 8 \int {u^\Big{\frac{3}{2}}} \, dx + 16 \int {u^\Big{\frac{1}{2}}} \, dx[/tex]
- [Integrals] Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \frac{2u^\Big{\frac{7}{2}}}{7} - 8 \Bigg( \frac{2u^\Big{\frac{5}{2}}}{5} \Bigg) + 16 \Bigg( \frac{2u^\Big{\frac{3}{2}}}{3} \Bigg) + C[/tex]
- Simplify: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \frac{2u^\Big{\frac{7}{2}}}{7} - \frac{16u^\Big{\frac{5}{2}}}{5} + \frac{32u^\Big{\frac{3}{2}}}{3} + C[/tex]
- [u] Back-Substitute: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \frac{2(x + 4)^\Big{\frac{7}{2}}}{7} - \frac{16(x + 4)^\Big{\frac{5}{2}}}{5} + \frac{32(x + 4)^\Big{\frac{3}{2}}}{3} + C[/tex]
- Rewrite: [tex]\displaystyle \int {x^2\sqrt{x + 4}} \, dx = \frac{2(x + 4)^\Big{\frac{3}{2}}(15x^2 - 48x + 128)}{105} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration