Respuesta :

Answer:

59.44%

Step-by-step explanation:

[tex]M_{R} = \frac{M_{O} }{2^{n} }[/tex]

[tex]n=\frac{t}{t\frac{1}{2} }[/tex]

Where [tex]M_{R}[/tex] = mass remaining

[tex]M_{O}[/tex] =original mass.

t= time

[tex]t\frac{1}{2}[/tex] =half life

[tex]t\frac{1}{2}[/tex] =1599,  t= 1200, [tex]M_{O}[/tex] =226,  [tex]M_{R}[/tex] =?

[tex]n=\frac{1200}{1599}[/tex]

n= 0.750469

[tex]M_{R} = \frac{226}{2^{ 0.750469} }[/tex]

[tex]M_{R}[/tex] =134.3367amu

percentage of mass remaining = [tex]\frac{134.3367amu}{226amu}[/tex] *100%

                                                   = 59.44%