Applying Properties of Exponents In Exercise, use the properties of exponents to simplify the expression.
(a) (e6) (e - 3)
(b) (e - 2) - 5
(c) (e^6/e^2)^-1
(d) (e3)4/3

Respuesta :

Answer: (a) [tex]e^3[/tex]

(b) [tex]e^{10}[/tex]

(c) [tex]\dfrac{1}{e^4}[/tex]

(d) [tex]e^{4}[/tex]

Step-by-step explanation:

Properties of exponents :

1) [tex]a^m\times a^n=a^{m+n}[/tex]

2) [tex]\dfrac{a^m}{a^n}=a^{m-n}[/tex]

3) [tex](a^m)^n=a^{mn}[/tex]

4) [tex]a^{-n}=\dfrac{1}{a^n}[/tex]

Now , we simplify the given expression using the above properties.

a) [tex](e^6)(e^{-3})[/tex]

[tex]=e^{6+(-3)}[/tex]   [By property (1)]

[tex]=e^{6-3}=e^3[/tex]  [∵ (+)(-)=(-)]

b) [tex](e^{-2})^{-5}[/tex]

[tex]=e^{-2\times-5}[/tex]  [By property (3)]

[tex]=e^{10}[/tex]   [∵ (-)(-)=(+)]

c) [tex](\dfrac{e^6}{e^2})^{-1}[/tex]

[tex]=(e^{6-2})^{-1}[/tex]    [By property (2)]

[tex]=(e^{4})^{-1}[/tex]  

[tex]=\dfrac{1}{e^4}[/tex]       [By property (4)]

d) [tex](e^3)^{\frac{4}{3}}[/tex]

[tex]=e^{3\times\frac{4}{3}}[/tex]        [By property (3)]

[tex]=e^{4}[/tex]