Applying properties of Exponents In Exercise, use the properties of exponents to simplify the expression.
(a) (54)(252)
(b) (91/3)(31/3)
(c) (1/3)^-3
(d) (64)(6- 5)

Respuesta :

Answer:

(a) [tex]5^{8}[/tex]

(b) 3

(c) 27

(d) [tex]\dfrac{1}{6}[/tex]  

Step-by-step explanation:

We need simplify the given expressions.

(a)

Consider the given expression is

[tex](5^4)(25^2)[/tex]

[tex](5^4)((5^2)^2)[/tex]

Using the properties of exponents we get

[tex](5^4)(5^4)[/tex]           [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]5^{4+4}[/tex]                  [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]5^{8}[/tex]

(b)

Consider the given expression is

[tex](9^{\frac{1}{3}})(3^{\frac{1}{3}})[/tex]

[tex]((3^2)^{\frac{1}{3}})(3^{\frac{1}{3}})[/tex]

Using the properties of exponents we get

[tex](3^{\frac{2}{3}})(3^{\frac{1}{3}})[/tex]           [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]3^{\frac{2}{3}+\frac{1}{3}}[/tex]                 [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]3^{1}[/tex]

[tex]3[/tex]

(c)

Consider the given expression is

[tex](\dfrac{1}{3})^{-3}[/tex]

Using the properties of exponents we get

[tex](\dfrac{3}{1})^{3}[/tex]         [tex][\because a^{-n}=\dfrac{1}{a^n}][/tex]

[tex]3^{3}[/tex]

[tex]27[/tex]

(d)

Consider the given expression is

[tex](6^4)(6^{-5})[/tex]

Using the properties of exponents we get

[tex]6^{4+(-5)}[/tex]                  [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]6^{-1}[/tex]

[tex]\dfrac{1}{6^{1}}[/tex]         [tex][\because a^{-n}=\dfrac{1}{a^n}][/tex]

[tex]\dfrac{1}{6}[/tex]