At 20 °C, the vapor pressure of benzene(C6H8) is 75 torr, and that of toluene(C7H8) is 22 torr. Assuming that benzene and toluene from and Idea solution.
A) What is the composition in mole fractions of a solution that has a vapor pressure of 33 torr at 20 °C
B) What is the mole fraction of benzene in the vapor above the solution described in part A?

Respuesta :

Explanation:

(a)  It is known that relation between vapor pressure and mole fraction is as follows.

             vapor pressure = [tex]x1 \times P_{1} + x_{2} \times P_{2}[/tex]

where,    [tex]x_{1}[/tex] = mole fraction of component one

               [tex]P_{1}[/tex] = vapor pressure of component one when pure

Also,   [tex]x_{1} + x_{2}[/tex] = 1

Now, putting the given values into the above formula as follows.

      vapor pressure = [tex]x1 \times P_{1} + x_{2} \times P_{2}[/tex]        

             33 = [tex]x_{1} \times 75 + (1 - x_{1}) \times 22[/tex]

              11 = [tex](75 - 22) \times x_{1}[/tex]

             [tex]x_{1}[/tex] = 0.20754717

                        = 0.21 (approx)    

And,     [tex]x_{2} = 1 - x_{1}[/tex]

                    = (1 - 0.21)

                    = 0.79

Hence, the composition in mole fractions of a solution that has a vapor pressure of 33 torr at [tex]20^{o}C[/tex] is 0.79.

(b)   According to Raoult's law,

          [tex]x_{1} \times P_{1} = (P_{vapor}) \times y_{1 }[/tex]

where,   [tex]y_{1}[/tex] = composition in gas phase

Therefore, calculate the value of [tex]y_{1}[/tex] (mole fraction of benzene) as follows.

              [tex]y_{1} = {x_{1} \times \frac{P_{1}}{P_{vap}}[/tex]

                       = [tex]\frac{0.21 \times 75}{33}[/tex]

                       = 0.471698114

                       = 0.47 (approx)

Thus, mole fraction of benzene in the given vapor is 0.47.