Respuesta :

Answer:

Smallest possible perimeter 16 inches.

Length : 4 inches,

Width : 4 inches.

Step-by-step explanation:

Let x represent length and y represent width of rectangle.

We have been given that area of a rectangle is 16 square inches.

We know that area of rectangle is product of its length and width. We can represent our given information in an equation as:

[tex]x\cdot y=16...(1)[/tex]

We know that perimeter of rectangle is sum of its all sides that is:

[tex]P=2x+2y...(2)[/tex]

From equation (1), we will get:

[tex]y=\frac{16}{x}[/tex]

Upon substituting this value in equation (2), we will get:

[tex]P=2x+2(\frac{16}{x})[/tex]

[tex]P=2x+\frac{32}{x}[/tex]

[tex]P=2x+32x^{-1}[/tex]

Now, we will find the derivative of perimeter equation as:

[tex]P'=\frac{d}{dx}(2x)+\frac{d}{dx}(32x^{-1})[/tex]

[tex]P'=2-32x^{-2}[/tex]  

Now, we will equate our derivative equal to 0 to find critical points as:

[tex]2-32x^{-2}=0[/tex]

[tex]2-\frac{32}{x^2}=0[/tex]

[tex]-\frac{32}{x^2}=-2[/tex]

[tex]\frac{32}{x^2}=2[/tex]

[tex]2x^2=32[/tex]

[tex]x^2=16[/tex]

Take square root of both sides:

[tex]x=\pm 4[/tex]

Since length cannot be negative, therefore, [tex]x=4[/tex].

Now, we will find 2nd derivative as:

[tex]P''=\frac{d}{dx}(2)-\frac{d}{dx}(32x^{-2})[/tex]  

[tex]P''=0-(-2*32x^{-3})[/tex]  

[tex]P''=64x^{-3}[/tex]  

We know that where 2nd derivative is positive, the point is a minimum. Let us substitute [tex]x=4[/tex] in 2nd derivative.

[tex]P''(4)=64(4)^{-3}[/tex]

[tex]P''(4)=64*\frac{1}{4^3}[/tex]

[tex]P''(4)=64*\frac{1}{64}[/tex]

[tex]P''(4)=1[/tex]

Since [tex]P''(4)=1[/tex], therefore  [tex]x=4[/tex] is a minimum.

Let us solve for y using equation [tex]y=\frac{16}{x}[/tex] as:

[tex]y=\frac{16}{4}[/tex]

[tex]y=4[/tex]

Therefore, width and length of 4 inches each will result in smallest perimeter.

[tex]P=2x+2y[/tex]

[tex]P=2(4)+2(4)[/tex]

[tex]P=8+8[/tex]

[tex]P=16[/tex]

Therefore, the smallest possible perimeter would be 16 inches.