Calculate the given quantity if
a=[1,1,-2]
b=[3,-2,1]
c=[0,1,-5]
(a) 2a + 3b
(b) |b|
(c) a.b
(d) compab
(e) projab
(f) The angle between a and b (correct to the nearest degree)

Respuesta :

Answer:

a. [tex]2a+3b=(11,-4,-1)\\[/tex]

b. [tex]|b|=\sqrt{14}[/tex].

c. [tex]a.b=-1[/tex]

d. [tex]comp_{a}b=\frac{-1}{\sqrt{6}}[/tex]

e.  [tex]proj_{a}b= \frac{-1}{6}[1,1-2]\\[/tex]

f. [tex]alpha=96^{0}[/tex]

Step-by-step explanation:

The vector representation of A,B,C  is written as

a=[1,1,-2]

b=[3,-2,1]

c=[0,1,-5].

a.To determine the scalar product of 2a+3b we have

[tex]2a+3b=2(1,1,-2)+3(3,-2,1)\\2a+3b=(2,2,-4)+(9,-6,3)\\[/tex]

we add component by component w arrive at

[tex]2a+3b=(11,-4,-1)\\[/tex]

b. we determine the magnitude of vector b i.e |b|. since b=[3,-2,1]

[tex]|b|=\sqrt{3^{2}+(-2)^{2} +1^{2}} \\|b|=\sqrt{9+4+1}\\ |b|=\sqrt{14}[/tex].

c.a.b is the dot product of vector a and vector b.

[tex]a.b=[1,1,-2].[3,-2,1]\\a.b=(1*3)+(1*-2)+(-2*1)\\a.b=3-2-2\\a.b=-1[/tex]

d. to find the component of b on a we use the expression

[tex]comp_{a}b=\frac{b.a}{|a|}[/tex]

where [tex]|a|=\sqrt{1^{2}+1^{2}+(-2)^{2}+ } \\|a|=\sqrt{6} \\[/tex]

Hence if we substitute values we have

[tex]comp_{a}b=\frac{[3,-2,1].[1,1,-2]}{\sqrt{6}}[/tex]

but earlier a.b=b.a=-1

[tex]comp_{a}b=\frac{-1}{\sqrt{6}}[/tex]

e. to find the projection of b on a we have the expression

[tex]proj_{a}b= \frac{a.b}{|a|^{2}}a \\[/tex]

If we substitute values we arrive at

[tex]proj_{a}b= \frac{[3,-2,1].[1,1,-2]}{|a|^{2}}a \\[/tex]

also recall that earlier we calculated a.b=b.a=-1 and

[tex]|a|=\sqrt{6} \\[/tex]

Hence [tex]proj_{a}b= \frac{-1}{\sqrt{6}^{2}}[1,1-2] \\[/tex]

Hence [tex]proj_{a}b= \frac{-1}{6}[1,1-2] \\[/tex]

f. to determine the angle between vector "a" and "b" we use

[tex]a.b=|a||b|cos\alpha[/tex]

where ∝ is the required angle . If we substitute values into the expression we arrive at

[tex]-1=\sqrt{14*6}cos\alpha\\\alpha =cos^{-1}(-1/\sqrt{84})\\\alpha=96^{0}[/tex]