Respuesta :
Answer:
[tex]3\sqrt{2}[/tex]
Step-by-step explanation:
For the complex number [tex]a+bi,[/tex] the absolute value is [tex]\sqrt{a^2+b^2}[/tex]
Given the complex number [tex]-4-\sqrt{2}i.[/tex] For this complex number,
[tex]a=-4\\ \\b=-\sqrt{2},[/tex]
then the absolute value is
[tex]\sqrt{(-4)^2+(-\sqrt{2})^2}=\sqrt{16+2}=\sqrt{18}=3\sqrt{2}[/tex]
Here, we are required to find the absolute value of: -4 - √2i.
The expression -4 - √2i can be rewritten as;
-4 + (-√2)i.
Generally, complex numbers take the form;
- a + i√b
- a + i√band the absolute value is given as;
- a + i√band the absolute value is given as;√(a² + b²)
Therefore, the absolute value of -4 + (-√2)i is;
√(-4)² + (-√2)² = √16+2
= √18 = √(9 × 2)
= 3√2
Therefore, the absolute value of -4 - √2i is 3√2.
Read more:
https://brainly.com/question/4681925